Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324603

ABSTRACT

Building ventilation significantly impacts healthy and safe indoor conditions preventing airborne virus spread between people. Therefore, ventilation strategy is a globally essential and health-promoting research topic. Previous studies showed the importance of sufficient ventilation for diluting the virus concentration and reducing the infection risk. The present study investigates the probability of coronavirus infection in the typical room calculated with the Wells Riley proposes recommendations for further research of indoor airflow effect on the virus transmission. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2322032

ABSTRACT

The validity of using CO2 as an indicator of airborne infection probability was studied. Tracer gas measurements were conducted in a field lab with two breathing thermal manikins resembling "infected” and "susceptible” persons seated at desks. The room was ventilated with a mixing air distribution. Experiments were performed at three ventilation rates. CO2 gas was dosed into the air exhaled by the manikins to simulate the metabolic CO2 generation by people. Simultaneously, nitrous oxide (N2O) tracer gas was dosed into the air exhaled by one of the manikins ("infected person”) to simulate the emission of exhaled infectious particles. CO2 and N2O concentrations were measured at several points. The probability of infection was calculated based on the concentration of CO2 and N2O measured in the air inhaled by the exposed manikin ("susceptible person”). The results did not confirm that CO2 can be used as a proxy to assess the infection probability. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2321198

ABSTRACT

A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model based on the assumption of complete air mixing in a single zone. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. In conclusion, this study shows that using the Wells-Riley model based on the assumption of completely mixing air may overestimate the long-range airborne infection risk compared to some high-efficiency ventilation systems such as displacement ventilation, but also underestimate the infection risk in a room heated with warm air supplied from the ceiling. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325979

ABSTRACT

Ventilation systems have been widely used to satisfy the occupants' indoor air quality and thermally comfort conditions. Various air distribution systems have been developed to supply clean air, including mixing, displacement, and diffuse ceiling ventilation systems. Diffuse ceiling systems are recent air distribution systems that supply cold air to the occupant area using perforated diffuse panels. These systems distribute air with a low velocity, minimizing the draft risk and dissatisfaction in highly dense spaces. The transmission risk of airborne infectious diseases like Covid-19 from the infected patient is high in waiting rooms. Thus, there is a demand to assure a secure environment for medical staff and patients in the waiting rooms. This study aims to numerically investigate the impact of the relative distance of the contamination source and exhaust on the transmission of airborne infectious diseases in the waiting room equipped with the diffuse ceiling ventilation system. In this regard, the release of Covid-19 from 4 different patients was investigated separately using the computational fluid dynamics technique. The distribution of the airborne infectious diseases is simulated by releasing SF6 tracer gas. The simulation result revealed that the contaminated patient located adjacent to the room's outlet had no contamination risk for other patients and staff in the waiting room. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

5.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324954

ABSTRACT

With the global outbreak of infectious respiratory diseases COVID-19, it is critical to evaluate the indoor airborne infection risk. The ventilation strategies and air distribution methods may affect indoor cross-infection significantly. This study aims to evaluate the effect of 4-way active chilled beam ventilation system on airborne infection risk. An experimental study has been conducted in a test chamber to investigate airborne transmission in an office room with two different heat load conditions and two chilled beam types. Tracer gas technique was used to simulate the exhaled droplet nuclei from the infected person and the photoacoustic gas analyser (Gasera One) was used to monitor the concentration of SF6. The revised Wells-Riley model was used to calculate the infection probability with both spatial and temporal resolutions. One of the occupants was an infector, and the influence of three factors were explored, including the infector's location, air distribution patterns, and heat load levels. To evaluate the dynamics of airborne exposure, real-time and average exposure indices were proposed. The experimental results illustrated that the airborne infection risk increased linearly within 30 min of the exposure time, and then keep a constant state. Under the same heat load conditions, 2 pcs of 1200 chilled beam system directed the particles in the occupied zone to the outlet effectively and reduced the infection rate of personnel in occupied zone. The location of the infector had a significant impact on the infection probability for the active chilled beam ventilation system. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

6.
ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 ; 6, 2022.
Article in English | Scopus | ID: covidwho-2266889

ABSTRACT

The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings. Copyright © 2022 by ASME.

7.
Build Environ ; 234: 110159, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2285980

ABSTRACT

According to the World Health Organization (https://covid19.who.int/), more than 651 million people have been infected by COVID-19, and more than 6.6 million of them have died. COVID-19 has spread to almost every country in the world because of air travel. Cases of COVID-19 transmission from an index patient to fellow passengers in commercial airplanes have been widely reported. This investigation used computational fluid dynamics (CFD) to simulate airflow and COVID-19 virus (SARS-CoV-2) transport in a variety of airliner cabins. The cabins studied were economy-class with 2-2, 3-3, 2-3-2, and 3-3-3 seat configurations, respectively. The CFD results were validated by using experimental data from a seven-row cabin mockup with a 3-3 seat configuration. This study used the Wells-Riley model to estimate the probability of infection with SARS-CoV-2. The results show that CFD can predict airflow and virus transmission with acceptable accuracy. With an assumed flight time of 4 h, the infection probability was almost the same among the different cabins, except that the 3-3-3 configuration had a lower risk because of its airflow pattern. Flying time was the most important parameter for causing the infection, while cabin type also played a role. Without mask wearing by the passengers and the index patient, the infection probability could be 8% for a 10-h, long-haul flight, such as a twin-aisle air cabin with 3-3-3 seat configuration.

8.
2022 Annual Modeling and Simulation Conference, ANNSIM 2022 ; 54:256-267, 2022.
Article in English | Scopus | ID: covidwho-2227699

ABSTRACT

The COVID-19 pandemic has urged the need to reconsider how our built environments influence our health conditions. The new guidelines have highlighted the importance of environmental settings in the virus transmission process. Given that external air ventilation is a major element of a building's energy performance, it is necessary to investigate the influence of the new settings on the building's energy consumption. This study aims to determine the energy performance and infection risk of underfloor air distribution UFAD and overhead systems OH when exposed to varying levels of external air ventilation. The findings indicate that raising the rate of outside ventilation increases a building's energy usage in all climates. It is also shown that the UFAD system shows its energy-saving potential the most in cold climates and higher ventilation rates. These findings suggest that it is critical to consider distinct ventilation techniques to prevent rising energy consumption rates while lowering the risk of viral transmission. © 2022 Society for Modeling & Simulation International (SCS)

9.
2nd European Conference on Communication Systems, ECCS 2022 ; : 59-63, 2022.
Article in English | Scopus | ID: covidwho-2213178

ABSTRACT

The development and progress of computer technology has profoundly changed the way people understand and adapt to the world. With the increasing maturity of computer technology, both people's production and life enjoy the improvement of quality, efficiency and convenience brought by the development and progress of computer technology. The global outbreak of COVID-19 in 2019 further highlighted the importance of R&D and application of computer technology in contactless scenarios. This paper attempts to put forward the concept of Intelligent Air Catering Distribution System, innovation realize the optimization and upgrading of the distribution system in the contactless catering scenes. It has practical significance for restoring residents' normal life, ensuring public health safety, promoting the recovery and transformation of tourism, catering, hotel and other service industries, and promoting employment. At the same time, it can be further extended to many other contactless distribution scenarios in production and life services. © 2022 IEEE.

10.
2nd International Conference on Testing Technology and Automation Engineering, TTAE 2022 ; 12457, 2022.
Article in English | Scopus | ID: covidwho-2137338

ABSTRACT

The hospital room is the first line of assistance to patients, to ensure the comfort of doctors and patients at the same time, but also to ensure the protection of the personal safety of doctors and patients. For this reason, a good airflow organization helps to reduce the concentration of respiratory particles in the whole space and also creates a comfortable environment. Based on the CFD theory of computational fluid dynamics, ANSYS Fluent software is used to simulate the clinic environment, and four airflow organizations are used as the research objects, and the temperature cloud map, air age, and draft rate (DR) are used as the evaluation indexes, while the particulate matter concentration in the clinic is analyzed, and the 10 main indexes for evaluating the clinic environment are subjected to the principal component analysis algorithm (PCA), the four airflow organizations are comprehensive ranking. Since the traditional questionnaire has a lot of human subjectivity, using the algorithm can effectively compensate for the shortcomings of the questionnaire, and comparing the conclusions derived from the PCA algorithm with the results of the questionnaire can make the conclusions more scientific. The final conclusion is that the airflow organization of the replacement air supply can meet human comfort and air freshness while reducing the concentration of respiratory particulate matter in the clinic environment under the evaluation of various indexes, for which the replacement air supply scheme can provide a theoretical basis and reference for future construction implementation. © 2022 SPIE.

11.
2022 Annual Modeling and Simulation Conference, ANNSIM 2022 ; : 718-729, 2022.
Article in English | Scopus | ID: covidwho-2056829

ABSTRACT

The COVID-19 pandemic has urged the need to reconsider how our built environments influence our health conditions. The new guidelines have highlighted the importance of environmental settings in the virus transmission process. Given that external air ventilation is a major element of a building's energy performance, it is necessary to investigate the influence of the new settings on the building's energy consumption. This study aims to determine the energy performance and infection risk of underfloor air distribution UFAD and overhead systems OH when exposed to varying levels of external air ventilation. The findings indicate that raising the rate of outside ventilation increases a building's energy usage in all climates. It is also shown that the UFAD system shows its energy-saving potential the most in cold climates and higher ventilation rates. These findings suggest that it is critical to consider distinct ventilation techniques to prevent rising energy consumption rates while lowering the risk of viral transmission. © 2022 SCS.

12.
Appl Therm Eng ; 217: 119256, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2007439

ABSTRACT

A large outdoor air supply is required to control the airborne infection risk of respiratory diseases (e.g., COVID 19) but causes a high energy penalty. This study proposes a novel integrated system of the exhaust air heat pump and advanced air distribution to energy-efficiently provide outdoor air. The system energy performances are evaluated by the experimentally validated thermodynamic model of heat pump and heat removal efficiency model of advanced air distribution. Results show the exhaust air heat pump with advanced air distribution can save energy because of three mechanisms. First, the exhaust air heat pump reuses the exhaust air to reduce the condensation temperature, thereby improving the coefficient of performance. Second, advanced air distribution reduces ventilation load. Third, advanced air distribution reduces the condensation temperature and enhances the evaporation temperature, thereby improving the coefficient of performance. The exhaust air heat pump saves energy by 18%, advanced air distribution saves energy by 36%, and the integrated system of the exhaust air heat pump and advanced air distribution can save energy by 45%. As a specific application, compared with the conventional system (i.e., the outdoor air heat pump with mixing ventilation), the exhaust air heat pump with stratum ventilation saves energy by 21% - 35% under various outdoor air ratios and outdoor air temperatures. The proposed integrated system of the exhaust air heat pump and advanced air distribution contributes to the development of low-carbon and healthy buildings.

13.
Appl Math Model ; 112: 800-821, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2003861

ABSTRACT

A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model which is limited to complete air mixing in a single zone. However, this assumption tends not to be feasible (or reality) for many situations. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. Some more advanced ventilation concepts create either two horizontally divided air zones in spaces as displacement ventilation or the space may be divided into two vertical zones by downward plane jet as in protective-zone ventilation systems. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. This model introduces a novel approach by estimating the interzonal mixing factor based on previous experimental data for three types of ventilation systems: incomplete mixing ventilation, displacement ventilation, and protective zone ventilation. The modeling approach is applied to a room with one infected and one susceptible person present. The results show that using the Wells-Riley model based on the assumption of completely air mixing may considerably overestimate or underestimate the long-range airborne infection risk in rooms where air distribution is different than complete mixing, such as displacement ventilation, protected zone ventilation, warm air supplied from the ceiling, etc. Therefore, in spaces with non-uniform air distribution, a zonal modeling approach should be preferred in analytical models compared to the conventional single-zone Wells-Riley models when assessing long-range airborne transmission risk of infectious respiratory diseases.

14.
Energy Build ; 271: 112309, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1936388

ABSTRACT

After the outbreak of COVID-19, the indoor environment has become particularly important in closed spaces, being a common concern in environmental science and public health, and of great significance for the building environment. To improve the indoor air quality and control the spread of viruses, the analysis of inhalable particles in indoor environments is critical. In this research, we study standards focused on inhalable particles and indoor environmental quality, as well as analyzing the movement and diffusion of indoor particles. Based on our analysis, we conduct an experimental study to determine the distribution of indoor inhalable particles of different sizes before and after diffusion under the conditions of underfloor air distribution. Furthermore, the mathematical modeling method is adopted to simulate the indoor flow field, particle trajectories, and pollutant dispersion process. The k-ε two-equation model is applied as the turbulence model in the numerical simulation, while the Lagrangian discrete phase model is adopted to trace the motion of particles and analyze the distribution characteristics of indoor particles. The results demonstrate that fine particles (i.e., those with size less than 0.5 µm) have a significant impact on the indoor particle concentration, while coarse particles (i.e., with size above 2.5 µm) have a greater influence on the total mass concentration of indoor particles. Small-sized particles can easily follow the airflow and diffuse to upper parts of the room. Overall, the effects of indoor particles on indoor air quality, including the potential threat of aerosol transmission of respiratory infectious diseases, are non-negligible. Application of the presented research can contribute to improving the health-related aspects of the building environment.

15.
Build Environ ; 222: 109366, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1914192

ABSTRACT

The recent pandemic due to SARS-CoV-2 has brought to light the need for strategies to mitigate contagion between human beings. Apart from hygiene measures and social distancing, air ventilation highly prevents airborne transmission within enclosed spaces. Among others, educational environments become critical in strategic planning to control the spread of pathogens and viruses amongst the population, mainly in cold conditions. In the event of a virus outbreak - such as COVID or influenza - many school classrooms still lack the means to guarantee secure and healthy environments. The present review examines school contexts that implement air ventilation strategies to reduce the risk of contagion between students. The analysed articles present past experiences that use either natural or mechanical systems assessed through mathematical models, numerical models, or full-scale experiments. For naturally ventilated classrooms, the studies highlight the importance of the architectural design of educational spaces and propose strategies for aeration control such as CO2-based control and risk-infection control. When it comes to implementing mechanical ventilation in classrooms, different systems with different airflow patterns are assessed based on their ability to remove airborne pathogens considering parameters like the age of air and the generation of airflow streamlines. Moreover, studies report that programmed mechanical ventilation systems can reduce risk-infection during pandemic events. In addition to providing a systematic picture of scientific studies in the field, the findings of this review can be a valuable reference for school administrators and policymakers to implement the best strategies in their classroom settings towards reducing infection risks.

16.
Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences ; 49(5):203-214, 2022.
Article in Chinese | Scopus | ID: covidwho-1903992

ABSTRACT

After the outbreak of COVID-19, it is worrisome that how to cope with the spread of the pandemic. Ventilation is the most important engineering control measure, ASHRAE, REHVA, SHASE and authoritative institutions in China have issued many documents on how to apply HVAC system to prevent and control the spread of COVID-19, and thus this paper summarizes the contents related to the ventilation rate and air distribution. Besides, traditional total volume ventilation has the disadvantages of insufficient ventilation rate, less efficiency for short-term exposure events at short range and high energy consumption during the pandemic. Source control based on advanced air distribution has the advantages of high control efficiency, personalized adjustable, fast response and high energy saving potential, which can make up the disadvantages of the total volume ventilation scheme. Therefore, this paper systematically summarizes the technical types of source control based on advanced air distribution in coping the spread of respiratory infectious diseases. Considering that the design of ventilation system in the post-pandemic era is facing the development of "combination of normal time and pandemic period", the advantages of applying source control in the post-pandemic era and the application schemes of source control in high-risk scenarios are discussed, and the directions that need to be further explored in order to implement the design concept of"combination of normal time and pandemic period" are also discussed. This paper aims to provide a reference for the compilation of subsequent guidelines, and to bring some new ideas and enlightenments to the ventilation design for future pandemic prevention. © 2022, Editorial Department of Journal of Hunan University. All right reserved.

17.
Sci Total Environ ; 833: 155173, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1783747

ABSTRACT

Proper air distribution is crucial for airborne infection risk control of infectious respiratory diseases like COVID-19. Existing studies evaluate and compare the performances of different air distributions for airborne infection risk control, but the mechanisms of air distribution for airborne infection risk control remain unclear. This study investigates the mechanisms of air distribution for both overall and local airborne infection risk controls. The experimentally validated CFD models simulate the contaminant concentration fields in a hospital ward based on which the airborne infection risks of COVID-19 are evaluated with the dilution-based expansion of the Wells-Riley model. Different air distributions, i.e., stratum ventilation, displacement ventilation, and mixing ventilation, with various supply airflow rates are tested. The results show that the variations of the overall and local airborne infection risks under different air distributions and different supply airflow rates are complicated and non-linear. The contaminant removal and the contaminant dispersion are proposed as the mechanisms for the overall and local airborne infection risk controls, respectively, regardless of airflow distributions and supply airflow rates. A large contaminant removal ability benefits the overall airborne infection risk control, with the coefficient of determination of 0.96 between the contaminant removal index and the reciprocal of the overall airborne infection risk. A large contaminant dispersion ability benefits the local airborne infection risk control, with the coefficient of determination of 0.99 between the contaminant dispersion index and the local airborne infection risk.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Ventilation/methods
18.
Indoor Air ; 32(1): e12979, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1629184

ABSTRACT

Commercial airliners have played an important role in spreading the SARS-CoV-2 virus worldwide. This study used computational fluid dynamics (CFD) to simulate the transmission of SARS-CoV-2 on a flight from London to Hanoi and another from Singapore to Hangzhou. The dispersion of droplets of different sizes generated by coughing, talking, and breathing activities in a cabin by an infected person was simulated by means of the Lagrangian method. The SARS-CoV-2 virus contained in expiratory droplets traveled with the cabin air distribution and was inhaled by other passengers. Infection was determined by counting the number of viral copies inhaled by each passenger. According to the results, our method correctly predicted 84% of the infected/uninfected cases on the first flight. The results also show that wearing masks and reducing conversation frequency between passengers could help to reduce the risk of exposure on the second flight.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Aircraft , COVID-19 , COVID-19/transmission , Humans , Masks , SARS-CoV-2
19.
Sustain Cities Soc ; 73: 103106, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1275703

ABSTRACT

The global spread of coronavirus disease 2019 poses a significant threat to human health. In this study, recent research on the characteristics of expiratory particles and flow is reviewed, with a special focus on different respiratory activities, to provide guidance for reducing the viral infection risk in the built environment. Furthermore, environmental influence on particle evaporation, dispersion, and virus viability after exhalation and the current methods for infection risk assessment are reviewed. Finally, we summarize promising control strategies against infectious expiratory particles. The results show that airborne transmission is a significant viral transmission route, both in short and long ranges, from infected individuals. Relative humidity affects the evaporation and trajectories of middle-sized droplets most, and temperature accelerates the inactivation of SARS-CoV-2 both on surfaces and in aerosols. Future research is needed to improve infection risk models to better predict the infection potential of different transmission routes. Moreover, further quantitative studies on the expiratory flow features after wearing a mask are needed. Systematic investigations and the design of advanced air distribution methods, portable air cleaners, and ultraviolet germicidal irradiation systems, which have shown high efficacy in removing contaminants, are required to better control indoor viral infection.

20.
Sustain Cities Soc ; 73: 103102, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1272721

ABSTRACT

In recent years, a large number of respiratory infectious diseases (especially COVID-19) have broken out worldwide. Respiratory infectious viruses may be released in the air, resulting in cross-infection between patients and medical workers. Indoor ventilation systems can be adjusted to affect fine particles containing viruses. This study was aimed at performing a series of experiments to evaluate the ventilation performance and assess the exposure of healthcare workers (HW) to virus-laden particles released by patients in a confined experimental chamber. In a typical ward setting, four categories (top supply and exhaust, side supply and exhaust) were evaluated, encompassing 16 different air distribution patterns. The maximum reduction in the cumulative exposure level for HW was 70.8% in ventilation strategy D (upper diffusers on the sidewall supply and lower diffusers on the same sidewall return). The minimum value of the cumulative exposure level for a patient close to the source of the contamination pertained to Strategy E (upper diffusers on the sidewall supply and lower diffusers on the opposite sidewall return). Lateral ventilation strategies can provide significant guidance for ward operation to minimizing the airborne virus contamination. This study can provide a reference for sustainable buildings to construct a healthy indoor environment.

SELECTION OF CITATIONS
SEARCH DETAIL